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Hardware Implementation of a High Efficiency and
High-Speed Squaring Architecture
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ABSTRACT

This paper presents the design of a high speed and simple squaring
structure based on half adder and full adder. The proposed architecture
consists of three main steps; simplification of the squaring structure,
calculation and transferring of the carry bit to the next part, and finally,
applying the modified Wallace Tree Adder to calculate the summation of
the products. The proposed squaring architecture is formed only by 13
half adders and 20 full adders for 8-bit squaring which has the lowest
complexity compared to other works. The proposed structure is modeled
by using Field-Programmable Gate Array (FPGA) and has been
successfully synthesized and implemented with Xilinx Spartan-6 and
Virtex-4 FPGA. Simulation results show that the proposed structure has
high speed and excellent performance with low power consumption while
having the lowest propagation delay (3.25 ns) and acceptable hardware
utilization compared to existing squaring models. The gate-level design of
8-bit squaring is implemented using Cadence layout tools in 65 nm CMOS
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I. INTRODUCTION

The drastic growth in digital technology and the expansion
of digital signal processing (DSP) applications increase the
demand for high-speed processing, which is possible by the
high throughput arithmetic operations [1]. Arithmetic Logic
Units (ALUs) are the vital blocks of processors that perform
various arithmetic operations such as addition, subtraction,
division, multiplication, and squaring [2].

The squaring algorithm is one of the fundamental and
essential functions which is applied in digital algorithms.
Accordingly, presenting the high-speed structure with low
computations and high performance can have a profound
impact on the hardware implementation of the digital signal
and image processing algorithms. The evaluation of
applications increases the requests for using the processors
along with square and cube functions with higher speed [3].
Generally, because of resource sharing, generalization and
simply convenience, the standard multiplier structure is used
to implement squaring. However, due to generating a large
number of duplicated partial products, the implementation of
a specialized squaring method is more efficient than applying
the multiplication techniques for squaring [4].

In general, the dedicated squaring can have a higher speed
with lower consumption and smaller structure compared to a
multiplier. Therefore, they have better performance in fixed-
point function evaluations and various floating-point
arithmetic computations [5]-[8].

In this research, the squaring structure consisting of three
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main steps is proposed which is based on HA and FA made
by XOR-MUX that has fewer transistors, lower average
delay, and higher speed compared to other FA structures [9].
For calculating the summation of the computed partial
products, modified Wallace Tree Adder is used which has a
higher speed with lower computations compared to the
conventional Wallace Tree structure [10], [11]. The block
diagram of the proposed structure for squaring is shown in
Fig. 1.

In the following sections, the main squaring structures are
reviewed in section II. The proposed structure for 8- bit
squaring is explained in section III. The simulation and
comparison results are presented in section IV and finally, in
section V, the conclusion is provided.
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Fig. 1. The block diagram of the proposed structure.
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II. RELATED WORK

In [12], the presented squaring and multiplication
structures are based on ancient Indian Vedic Mathematics
Sutras. In common Vedic multiplier architectures, the partial
product terms are calculated in parallel form, and afterward,
the calculated terms are added to get the final result.
However, in the proposed structures in [12]-[19], all the
partial products are adjusted by applying the concatenation
operation. Then, instead of applying two adders at different
steps, the carry- save adder (CSA) is used. In the n-bit
squaring architecture, for computing the partial products, one
multiplier of n/2 bits along with two squaring circuits of n/2
bits is applied. Finally, for calculating the final output, all the
computed partial products are adjusted accordingly, and their
summation is calculated using the single CSA.

In [20], the squaring structure is based on Anurupya Sutra
of Vedic Mathematics. In this structure, the considered level
base value is less than the decimal input number which the
deficit is calculated using subtracting the level base value
from the number.

In [21], the multiplier based on Yavadunam used the bit
reduction technique to improve the area and speed of the
structure. In another word, reducing the bit numbers feeding
to the multiplier decreased the number of interconnects and
part leading to decrease the delay and area, and subsequently,
increasing the speed. The proposed squaring structure in [1]
is based on modified Yavadunam which to optimize the area
and speed, the method of weight reduction is employed to
reduce the N-bit size to N-1 bits.

The presented squaring structure in [22] is inspired by the
Peasants method which is the ancient Egyptian method of
multiplication. In this method, two numbers are determined
in the left and right sides. Then, the multiplication of each bit
on the right side in a specific row and the last bit (LSB) of the
number of the same row is calculated. If the number on the
left side is even, the multiplication of this bit will be
automatically canceled by making zero all elements of that
row on the right side which simplifies the computations.

In [23], the presented squaring architecture is based on a
novel multi-precision squaring method named Complete
Hybrid Karatsuba Squaring (CHKSO. In this method, the
subtractive Karatsuba is the basic part of the structure. Also,
to make shorter the input, the adopt Vector-Like (VL)
squaring is used which has a slight advantage compared with
traditional product-scanning squaring.

III. PROPOSED STRUCTURE

The proposed squaring structure consists of three main
steps; simplification the squaring, calculating the summation
of partial products and transferring the carry bits to the next
part, which is done in two steps, and applying the modified
Wallace Tree Adder to calculate the summation of the
provided products.

In the first step, some partial products are replaced by
similar terms. This step makes the structure of squaring
simpler. The second step consists of two main parts and the
main goal of these parts is to calculate the carry bits according
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to two equations and then transfer them to the next part. In
this step, many partial products are removed, which directly
increases the speed of the calculation. Finally, for adding the
partial products, modified Wallace Tree Adder is used, which
is faster than the conventional Wallace Tree Adders.

A. Simplification of the Squaring
In this step, firstly, the expanded square of the 8-bit number
is determined and then, the anam terms are replaced by the aman
terms (n is bigger than m). Hence, similar partial products are
specified and replaced. This step has a great effect on
reducing the number of partial products in the next step.

B. Calculating the Summation of Partial Terms

This step consists of two main parts. In the first part, the
carry bits of some partial terms are calculated according to
(1a) and then transferred to the next stage [22]. In the second
part, the summation of some terms is computed and
simplified according to (1b). The results of the simplification
of the squaring structure according to steps 1 and 2 are shown
in Fig. 2. In this step, the number of partial products
significantly reduces from 64 to 37. As a result, the number
of FA and HA which will be applied at the next step for
calculating the final output is reduced. Hence, this step plays
a critical role in improving the speed of the proposed
structure.
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Fig. 2. The results after applying steps 1 and 2.
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Fig. 3. Modified Wallace Tree Adder for proposed 8-bit squaring.
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Fig. 4. The proposed 8-bit squaring structure.

C. Modified Wallace Tree Adder

To calculate the summation of the extracted terms in step
2 and calculating the final output, modified Wallace Tree
Adder is used. These types of adders are based on summing
the partial product bits in parallel which apply a tree to carry
save adder. The modified Wallace Tree Adder has a higher
speed with lower computations compared to the Wallace Tree
structure used in [10], [11]. According to this structure, the
summation of partial products for every three rows is
calculated in each step. In this case, at first, each column of
the first three rows is grouped according to the number of
partial products. As a result, if the column consists of three
partial products, the FA is used, otherwise, the HA is used for
calculating the summation of grouped partial products.
Afterward, the results of the sum and the carry bits are
transferred to the next rows which are considered as one row
in the next step. Again, three rows of partial products are
considered, and the columns are grouped according to the
mentioned way. This process is repeated until only two rows
of partial products remain. Finally, the carry ripple adder is
used to calculate the summation of these two last rows. This
process is shown in Fig. 3. According to this figure, after two-
step grouping, only two rows of partial products remain. The
proposed squaring structure for an 8-bit number is shown in
Fig. 4. As it is shown, by using this structure, only 20 FAs
and 13 HAs are required for 8-bit squaring. As a result, the
proposed method has a simple structure and high speed with
low power consumption.

IV. SIMULATION RESULTS

The proposed structure for 8-bit is synthesized and im-
plemented on the Xilinx FPGA Spartan-6 family, device
XC6SLX4-TQG144 with a speed grade of -3 and Virtex-4
family, device XC4VLX15-SF363 with a speed grade of -12.
The comparison results are presented in Table I. A sample
simulation waveform of the squaring operation is illustrated
in Fig. 5. In this figure, the parameters a and b are input signal
and output signal which is the square of parameter a,
respectively.

To investigate the performance of the proposed squaring
structure and give a comprehensive comparison between this
structure and other related works which are implemented on
Xilinx FPGA (Virtex-4 family), the propagation delay and
hardware utilization of the previous works for 8-bit squaring
are provided in Table II. Also, the comparisons of utilization
and propagation delay results are shown in Fig. 6 and Fig. 7,
respectively. There is a trade-off between area and
propagation delay for any digital design. Comparison results
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show that the proposed structure, besides acceptable
hardware utilization, has lower propagation delay compared
to other works. Hence, the proposed structure can be used in
the systems needing a high-speed operation with low power
consumption.

Fig.8 shows the gate-level layout design of the proposed 8-
bit squaring structure using Cadence layout tools in 65 nm
CMOS technology. The layout design has a total area of
0.095 mm? which consists of 20 FAs, 13 HAs, and 34
inverters.
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Fig. 5. The sample simulation waveform of 8-bit squaring.
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Fig. 8. The gate-level layout design of proposed 8-bit squaring.

TABLE I: DEVICE UTILIZATION SUMMARY AND PROPAGATION DELAY
Device Utilization
4-Input LUTs Slices “PD (ns)
Virtex-4 XC4VLX15 70 39 3.255
Spartan-6 XC6SLX4 32 0 5.22

*Propagation Delay.

Device Parameters

TABLE II: COMPARISON OF THE UTILIZATION AND PROPAGATION

DELAY
Method DU and PD
etho LUTs PD (ns)
Reference [24] 35 14.256
Reference [24] 186 15.718
Reference [22] 15 6.299
Reference [18] 64 12.781
Reference [12] NA 6.377
Reference [20] 62 8.6
This work 70 3.255

Device Utilization.

V. CONCLUSION

In this research, a high-performance and area-efficient
square architecture based on three main steps is presented.
The proposed square structure is successfully synthesized and
implemented on the Xilinx FPGA Spartan-6 family and
Virtex- 4 family. The comparison results indicate that the
proposed architecture has the lowest propagation delay
compared to previous architecture. Thus, the proposed
squaring architecture is suitable for high-performance
processors that require intensive computations.
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