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I. INTRODUCTION 

Employing matrix power function (MPF) for 

cryptographic purposes was first introduced in [1], [2]. The 

presented protocols belong to so-called non-commutative 

cryptography, which is of special interest to researchers. The 

matrix power function is suitable for use in both symmetric 

and asymmetric cryptography. In 2016, a linear algebra attack 

on non-commuting cryptography protocols based on a matrix 

power function was presented in [3]. Since then, a number of 

MPF-based protocols have been built using a non-commuting 

algebraic structure as a platform semigroup [4]-[7]. 

With a somewhat different background, [8], [9] 

constructed cryptographic protocols using tropical semirings 

as building blocks. A series of protocols based on different 

idempotent semirings was proposed by references [10]-[13]. 

A review of the cryptanalysis of most schemes known from 

the literature can be seen in [14]. Reference [15] showed 

attacks on the protocols presented in [8] based on patterns of 

higher powers of tropical matrices. To attack some of the 

well-known tropical protocols, [16] used the so-called almost 

linear periodic property of the matrices. Different 

cryptanalysis of the tropical protocols based on solving the 

tropical discrete logarithm problem was suggested in [17] or 

based on a simple binary search in [18]. 

For this reason, cryptographic community began to look 

for other actions on matrices in tropical semirings. In [19], a 

public key exchange protocol was constructed based on the 

semidirect product of two cyclic (semi)groups of matrices 

(which was successfully attacked in [20] - we recommend 

[21] as a good survey of semidirect product key-exchange 

schemes).  

However, to the best of our knowledge, research in this 

direction is insufficient and emphasizes the need for new 

concepts to build cryptosystems that are resistant to quantum 

attacks. Developing some ideas from [22], we have built a 

double key-exchange protocol, which is the basis of our 

message encryption scheme. 

This paper is organized as follows. In Section 2, some 

preliminaries of the theory of matrix power functions, as well 

as basic concepts of tropical algebra are given. In Section 3, 

the first key-exchange protocol is presented. In the next 

Section 4, a toy example is provided to illustrate the action of 

the protocol. Section 5 describes a scheme for encrypting 

messages using a double key-exchange protocol, the first 

phase of which is based on the key-exchange protocol built in 

Section 4. Section 6 discusses the security analysis of the 

scheme. Finally, Section 7 draws conclusions.  
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II. PRELIMINARIES 

A. Matrix power function (MPF) 

Let q be a power of prime, 
qF  be a finite field of order q, 

GLn(
qF ) be a set of n n   invertible matrices of 

qF -entries, 

and Mn(
qF ) is a set of  n n matrices of 

qF -entries. Then a 

one-side matrix power function (MPF) can be defined in the 

following way: 

Definition 1. Let matrix ( )ij n nQ q =  powered by matrix 

( )ij n nY y =  from the right be a matrix ( )ij n nP p = (denoted

YP Q= ), and matrix Q powered by matrix ( )ij n nX x =  from 

the left be a matrix ( )ij n nS s =  (denoted
XS Q= ). The 

entries of the matrix P are computed according to the 

formula: 

1

kj

n
y

ij ik
k

p q
=

=   

the entries of the matrix S are computed according to the 

formula: 

1

ik

n
x

ij kj
k

s q
=

=   

In another way, this can be interpreted as a mapping [5]: 

Definition 2. Let the entries of the base matrix Q be chosen 

from a (semi)group G and the entries of the matrices X and Y 

be chosen from a ring 
m

, where m is the maximum 

multiplicative order of the elements of G. MPF is a mapping 

FQ(X,Y) : Mat(
m

)  Mat(G) → Mat(G) (or a mapping 

FQ(X,Y) : Mat(G)   Mat(
m

)→ Mat(G)), denoted in the 

following way: 
XS Q=  ( YP Q= ). 

Example 3. For matrices X, Q and Y of the 2-nd order, we 

compute the matrices 
XS Q=  and YP Q=  as follows:  

11 12

11 12 11 12
21 22

21 22 21 22

11 12 11 21 12 22

21 22 11 21 12 22

,

x x
x x x xx x

x x x x

q q q q q q
S

q q q q q q

 
 
    

= =   
   

11 12
11 21 12 22

21 22

11 21 12 22

11 12 11 12 11 12

21 22 21 22 21 22

y y y y y y
y y

y y y y

q q q q q q
P

q q q q q q

 
 
 

  
= =   
   

. 

 

Definition 4. The MPF problem is to find the matrix X (or 

Y) when given the base matrix Q and the MPF value matrix S 

(or P).  

B. Tropical semirings [23] 

A semiring ( , , )R +   is called commutative if a semigroup 

( , )R   is commutative.  If a commutative semigroup ( , )R +  is 

an abelian group, then a semiring is ring. If it is not an abelian 

group, then the semiring is called a proper semiring. An 

element a  of the semiring ( , , )R +   is called additively 

idempotent if a a a+ = . If each element of the semiring is 

additively idempotent, then R  is called an additively 

idempotent semiring. An element a  of the semiring ( , , )R +   

is called multiplicatively idempotent if a a a = . If the 

semiring R  is an additively idempotent, then its 

multiplicatively idempotent elements are called idempotent 

elements, or idempotents. 

Definition 5. A semiring ( , , )R R= +   is called 

idempotent if it is an additively idempotent. 

Some examples of idempotent semirings. Exotic 

semirings are idempotent semirings whose elements are from 

different sets of numbers (it is possible for −  and/or +  

to be included as well) and for which the additive operation 

is defined by either choosing the minimum or choosing the 

maximum and the multiplicative operation is the usual 

addition (+) or multiplication ( ). 

A semiring 
max,min { , },max,min=   − +   is an 

idempotent semiring which is not a semifield. In this semiring 

0 , .e= − = +  The inverse element with respect to the 

operation   min  does not exist and the maximal element is  

.+   

Well studied are the following four idempotent semifields: 

max, min,{ },max, , { },min, ,+ +=   − + =   + +

max, min,{0},max, , { },min, , +  +=    =   +   

when  is the field of the real numbers and 

{ | 0}.x x+ =    

Semirings 
max, { },max,+ =   − +  and 

min, { },min,+ =   + +  are also called tropical semirings 

in honor of the pioneering work of Imre Simon [24]. 

C. Matrices defined over idempotent semifields [23] 

Let ( , , , , )K    be an idempotent semifield with   

and −  the neutral elements for the additive operation   

and the multiplicative operation   respectively. Let us 

consider matrices with entries from K . For some random 

matrices 

( ) , ( ) , ,( )m n m n n l

ij ij ijA a K B b K C c K  =  =  = 

the operations addition and multiplication of matrices, as well 

as the operation multiplication of a matrix and a scalar 

x K  are defined in the usual way, according to the 

formulas: 

1

( ) , ( ) , ( ) .
n

ij ij ij ij ik kj ij ij
k

A B a b B C b c x A x a
=

 =   =   = 

From the properties of the operations in the semifield K , it 

follows that so defined operations obtain the following 

properties (as usual, we shall omit the notation   for the 

multiplication): 

1. ( ) ( )A B C A B C  =    (associativity); 

2. A B B A =   (commutativity); 

3. A O A =  (existence of zero matrix); 

4. A A A =  (idempotence); 

5. ( ) ( )x yA xy A=  (associativity); 

6. A A A= =  (existence of unit); 

7. ( )x A B xA xB =   (distributivity); 

8. ( )x y A xA yA =   (distributivity), 

for all matrices , , m nA B C K   and all elements 

, .x y K  

According to the so described properties, it follows that the 

set ,m nK  together with operations: matrix addition and 
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multiplication of a matrix and а scalar, is a semimodule over 

the idempotent semiring K . 

Finally, for arbitrary matrices , ,A B C  and D (of sufficient 

size, so that the correspondent matrix multiplications exist), 

we have the following properties: 

1. ( ) ( )A BC AB C=  (associativity); 

2. ( )B C D BC BD =   (distributivity). 

Square matrices over idempotent semifields. Let us 

consider a square matrix n nA K  . As usual, the matrix A  is 

called diagonal, if all its nondiagonal entries are zeros. The 

diagonal matrix A  with diagonal entries 
11,..., nna a  is 

denoted by
11( ,..., )nnA diag a a= . If 

iia   for all 1,..., ,i n=  

then such matrix is said to be strongly diagonal. A strongly 

diagonal matrix (1,...,1)I diag=  is called unit matrix. The 

set  n nK   is closed with respect to the matrix multiplication 

and for arbitrary matrices , , ,n nA B C K   the following 

conditions are satisfied: 

1. ( ) ( )A BC AB C=  (associativity); 

2. AI IA A= =  (existence of unit matrix); 

3. ( )A B C AB AC =   (distributivity). 

With respect to the operations matrix addition and matrix 

multiplication, the set  n nK   assigns commutative idempo-

tent semiring with one. 

The operation matrix exponentiation is introduced in the 

standard way. For an appropriate matrix A O  and an 

integer 0p   we have 

0 1 1, , .p p p pA I A A A AA O O− −= = = =  

D. Polynomials of matrices  

Here we use the definitions and notations from [23]. 

Polynomials in the semiring  
min

. Let us denote the n−

th power of x  by 
• • • • .n

n

x x x x nx=  =  

Definition 6. An expression of the type 

•
•

•

0
( )

n

i

ii
P x a x

=
=  

is called min polynomial. The integer 1n+  determines the 

length of the polynomial. 

Polynomials in the semirings 
max

. Let us denote the 

n− th power of x  by   •

• • • .n

n

x x x x nx=  =    

Definition 7. An expression of the type  

•

•
• 0

( )
n i

i

i

P x a x
=

=  

is called max polynomial, where 1n+  determines the 

length of the polynomial. 

Min and max polynomials are called tropical polynomials. 

Proposition 8. Let ( ), ( )p x t x  be tropical polynomials, 

and M be a given matrix.  Then 

( ) ( ) ( ) ( )p M t M t M p M =  , 

where   is a multiplication of the polynomials in the 

selected semiring. 

Proof. Follows from the definitions of operations in 

tropical semirings. 

E. Definition of a Matrix Power Function in Terms of 

Tropical Algebra 

Definition 9. Let the entries of the base matrix Q be chosen 

from a (semi)group G and the entries of the matrices X and Y 

be chosen from the tropical semiring 
min, { },min,+ =   + +  

(or 
max, { },max,+ =   − + ). Then MPF is a mapping 

             FQ(X) : Mat(
min,+

)  Mat(G) → Mat(G) 

(denoted in the following way: XS Q= ), or a mapping 

              FQ(Y) : Mat(G)   Mat(
min,+

)→ Mat(G)  

(denoted: XS Q=  ( YP Q= ). 

The elements of the matrix P are computed according to 

the formula: 

1
1

kj

nn
y

ij ik ik kj
k

k

p q q y


=
=

=  =     (1) 

and the elements of the matrix S are computed according 

to the formula: 

1
1

ik

nn
x

ij kj kj ik
k

k

s q q x


=
=

=  =  .   (2) 

 

Example 10. For tropical matrices X, Q and Y of the 2-nd 

order, we compute the matrices 
XS Q=  and YP Q=  in the 

following way:  

11 12

21 22

11 12 11 12

21 22 21 22

11 12

21 22

11 21 12 22

11 21 12 22

11 11 21 12 12 11 22 12

11 21 21 22 12 21 22 22

,

x x

x x

x x x x

x x x x

q q
S

q q

q q q q

q q q q

q x q x q x q x

q x q x q x q x

 
 
 

   

   

 
= = 

 

  
= 

  

+ + 
 

+ + 

 

11 12

21 22

11 21 12 22

11 21 12 22

11 12

21 22

11 12 11 12

21 22 21 22

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

.

y y

y y

y y y y

y y y y

q q
P

q q

q q q q

q q q q

q y q y q y q y

q y q y q y q y

 
 
 

   

   

 
= = 
 

  
= 

  

+ + 
 

+ + 

 

 

Proposition 11. The MPF is one‐side (left‐side or right‐

side) associative, i.e., the following identities hold: 

          ( )
Z

X ZX XZQ Q Q= = , ( )
T

Y YT TYQ Q Q= = . 

Proof. Follows from the definition of MPF. 

F. Employing circulant matrices 

In our protocol, we need commutative matrices, so we 

suggest using a set of circulant matrices [25], [26].  

Lemma 12. Let Q, S and P be circulant matrices. Then the 

matrices YP Q= and XS Q=  are also circulant. 

Proof. Follows from the definition of circulant matrices 

and (1), (2). 

Lemma 13. Let Q, A and B be circulant matrices. Then  
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B AQ Q  = 
A BQ Q ,  B A A BQ Q Q Q =  . 

Proof. Follows from Lemma 12 and the definition of 

circulant matrices.  

Theorem 14. Let Q1, Q2, A1, A2, B1, B2 be circulant 

matrices. Then 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

B B A A A A B BQ Q Q Q Q Q Q Q   =    , (3) 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

B B A A A A B BQ Q Q Q Q Q Q Q   =    . (4) 

Proof. Matrices 1 2 1 2

1 2 1 2, , ,A A B BQ Q Q Q ,

1 2 1 2

1 2 1 2, , ,A A B BQ Q Q Q  are circulant. Then (3) and (4) follow 

from Lemma 13. 

 

III. KEY EXCHANGE PROTOCOL USING MPF 

The implementation of the protocol requires the definition 

of both a matrix semiring over a commutative semiring MS 

and a set of matrices M over a semigroup G. We suggest MS 

to be the set of circulant matrices over the tropical semiring 

min, ,min,+ =  + (or 
max, ,max, )+ =  +  and G be the 

semigroup of matrices with entries from . The protocol 

works both in the case of a left action and in the case of a right 

action. 

The parameters of the domain are: tropical semiring 

min, ,min,+ =  +  (or 
max, ,max, )+ =  + , two circulant 

matrices Q1 and Q2 from MS , and a randomly chosen matrix 

M whose entries are from .  

1) Alice selects as her secret key two circulant matrices 

A1 and A2. She calculates her public key 
1 2

1 2

A A

AK Q Q M=   . 

2) Alice sends her public key 
AK  to Bob. 

3) Bob selects as his secret key two circulant matrices B1 

and B2. He calculates his public key 
1 2

1 2

B B

BK Q Q M=   . 

4) Bob sends his public key 
BK  to Alice. 

5) Alice computes the common secret key:   
1 2 1 2 1 2

1 2 1 2 1 2 .A A A A B B

AB BK Q Q K Q Q Q Q M=   =      

6) Bob computes the common secret key: 
1 2 1 2 1 2

1 2 1 2 1 2 .B B B B A A

BA AK Q Q K Q Q Q Q M=   =    

Proposition 15. Alice’s key 
ABK  and Bob’s key 

BAK  are 

equal. 

Proof. Theorem 14 implies that for circulant matrices Q1, 

Q2, A1, A2, B1, B2 holds: 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

A A B B B B A AQ Q Q Q Q Q Q Q   =    . 

Then 
1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 .

B B A A

AB

A A B B

BA

K K Q Q Q Q M

Q Q Q Q M K

= =     =

    =
 

The security of the protocol relies on the difficulty of the 

following 

Tropical Matrix Power Function Problem 16. Given a 

matrix KA , two circulant matrices Q1, Q2 , and a matrix find 

two circulant matrices A1, A2  such that 
1 2

1 2

A A

AK Q Q M=    

(or solve a similar problem for Bob’s public key KB). 

 

 
Fig. 1. Key-exchange protocol based on tropical MPF. 

 

The difficulty of this problem is based on the difficulty of 

the MPF problem which “can be a candidate one-way 

function, since the effective (polynomial-time) inversion 

algorithm for it is not yet known” [2] and the matrix 

decomposition problem [27].  Fig. 1 shows the concept of the 

key-exchange process. 

 

IV. A TOY EXAMPLE 

The parameters of the domain are: tropical semiring 

min, ,min,+ =  + , two circulant matrices Q1 and Q2 from 

MS , and a randomly selected matrix M  which  elements are 

from . 

1 2

7 13 22 5 16 25 8 2 15

22 7 13 , 25 5 16 , 28 14 13

13 22 7 16 25 5 3 7 19

Q Q M

     
     

= = =     
     
     

 

 

1) Alice selects as her secret key two circulant 

matrices: 

1 2

6 30 20 10 12 27

20 6 30 , 27 10 12

30 20 6 12 27 10

A A

   
   

= =   
   
   

 . 

She calculates 1 2

1 2

A A

AK Q Q M=   : 

1

6 30 20

20 6 30

30 20 6

1

7 13 22

22 7 13

13 22 7

962 728 662

662 962 728 ,

728 662 962

A Q

 
 

 
 
 

 
 

= = 
 
 

 
 

=  
 
 

 

2

10 12 27

27 10 12

12 27 10

2

5 16 25

25 5 16

16 25 5

782 895 577

577 782 895 ,

895 577 782

A Q

 
 

 
 
 

 
 

= = 
 
 

 
 

=  
 
 
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1 2

1 2

962 728 662 782 895 577

662 962 728 577 782 895

728 662 962 895 577 782

1305 1239 1444

1444 1305 1239 ,

1239 1444 1305

A AQ Q

   
   

 =    
   
   

 
 

=  
 
 

 

1 2

1 2

1305 1239 1444 8 2 15

1444 1305 1239 28 14 13

1239 1444 1305 3 7 19

1267 1253 1252

1242 1246 1258 .

1247 1241 1254

A A

AK Q Q M=   =

   
   

   
   
   

 
 

=  
 
 

 

 

2) Alice sends her public key 
AK  to Bob. 

3) Bob selects as his secret key two circulant matrices: 

 

 
1 2

2 10 21 15 24 17

21 2 10 , 17 10 24

10 21 2 24 17 10

B B

   
   

= =   
   
   

.   

He calculates 1 2

1 2

B B

BK Q Q M=   : 

1

2 10 21

21 2 10

10 21 2

1

7 13 22

22 7 13

13 22 7

507 558 321

321 507 558 ,

558 321 507

B Q

 
 

 
 
 

 
 

=  
 
 

 
 

=  
 
 

 

2

15 24 17

17 10 24

24 17 10

2

5 16 25

25 5 16

16 25 5

947 785 844

844 947 785 ,

785 844 947

B Q

 
 

 
 
 

 
 

=  
 
 

 
 

=  
 
 

 

1 2

1 2

507 558 321 947 785 844

321 507 558 844 947 785

558 321 507 785 844 947

1106 1165 1268

1268 1106 1165 ,

1165 1268 1106

B BQ Q

   
   

 =    
   
   

 
 

=  
 
 

 

1 2

1 2

1106 1165 1268 8 2 15

1268 1106 1165 28 14 13

1165 1268 1106 3 7 19

1114 1108 1121

1134 1120 1119 .

1109 1113 1125

B B

BK Q Q M=   =

   
   

   
   
   

 
 

=  
 
 

 

 

4) Bob sends his public key 
BK  to Alice. 

5) Alice computes the common key 

 

1 2

1 2

1305 1239 1444 1114 1108 1121

1444 1305 1239 1134 1120 1119

1239 1444 1305 1109 1113 1125

2373 2359 2358

2348 2352 2364 .

2353 2347 2360

A A

AB BK Q Q K=   =

   
   

   
   
   

 
 

=  
 
 

 

 

6) Bob computes the common key 

 

1 2

1 2

1106 1165 1268 1267 1253 1252

1268 1106 1165 1242 1246 1258

1165 1268 1106 1247 1241 1254

2373 2359 2358

2348 2352 2364 .

2353 2347 2360

B B

BA AK Q Q K=   =

   
   

   
   
   

 
 

=  
 
 

 

 

At the end of the protocol they share the same key K. 

 

V. MESSAGE ENCRYPTION SCHEME BASED ON MPF 

A comparison between symmetric and asymmetric 

encryption protocols [28], [29] has shown that symmetric 

algorithms (like AES) are better than asymmetric algorithms 

(like RSA), mainly due to the better execution time. One of 

the goals of asymmetric cryptography researchers is to find 

new primitives in order to improve the execution time of the 

protocols. MPF-based protocol presented in [2] and [7] is in 

some respects more efficient than RSA asymmetric 

encryption [30]. This motivates us to build a protocol using 

MPF, but in tropical algebra, where the operations are faster 

than in usual algebra. The encryption scheme proposed here 

is based on a double KEP, the first phase of which is the 

presented in Section 3 protocol. 

Let the sender Bob be willing to send a message S to the 

receiver Alice. Alice and Bob need to agree on: a tropical 

semiring 
min, ,min,+ =  +  (or 

max, ,max, )+ =  + , an 

action (left or right), two circulant matrices Q1 and Q2  from 
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MS, and a randomly chosen matrix M  whose entries are from 

. Additionally, each user needs to choose two tropical 

polynomials. According to the structure of the proposed 

scheme, S is a matrix (of the same order as the previously 

selected matrices Q1, Q2 and M) with entries coded in binary 

form.  

First key-exchange phase. Alice and Bob obtain the same 

secret key K using the key-exchange protocol (KEP) 

described in Section 3. 

Second key-exchange phase. At this phase, the obtained 

shared secret key K serves as an input. 

1) Bob chooses two tropical polynomials ( ), ( )d x e x . 

2) He computes his public matrix 

( ) ( )B d M K e M=    

and sends it to Alice. 

3) Alice chooses two tropical polynomials ( ), ( )p x t x . 

4) She computes her public matrix 

( ) ( )A p M K t M=    

and sends it to Bob. 

Encryption phase. 

5) Bob computes his secret key: 

( ) ( )

( ) ( ) ( ) ( ).

F d M A e M

d M p M K t M e M

=   =

   
 

6) Bob computes the ciphertext C F S=  , where ⊕ 

is bitwise sum modulo 2 of all entries of the matrices 

F and S, and sends it to Alice. 

Decryption phase.  

7) Alice computes her secret key: 

( ) ( )

( ) ( ) ( ) ( ).

p M B t M

p M d M K e M t M

  =

   
 

According to Proposition 8, Alice obtained the same secret 

key F as Bob: 

              ( ) ( )p M B t M  =  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

p M d M K e M t M

d M p M K t M e M F

    =

    =
 

8) Alice can now decrypt the ciphertext C using the 

decryption key F and the relation: 

S F C F F S=  =   . 

 

VI. SECURITY ANALYSIS 

To enhance the security of the presented message 

encryption scheme, we suggested double KEP. So, in order to 

break this protocol, an attacker needs first to solve the 

following problem: 

• The Tropical Matrix Power Function Problem 16 to 

obtain the secret key K.  

Even if the attacker was able to break the first KEP and get 

K, in the second stage, he needs to solve:  

• The Semiring Action Problem. Given two matrices 

( ),n nM D  ( ),n nK S  and a matrix of the type 

1 1[ ] [ ]T S M K S M   ,    (5) 

find two matrices 
1 1[ ]U S M  and 

2 1[ ],U S M  such that 

1 2T U K U=   . 

In this case, matrix T  can be matrix A , which is Alice's 

public key,  or (which is the same) Bob's matrix B  and
1[ ]S M   

is the matrix semiring generated by the matrix M . This 

means that in order to break the protocol, the following two-

sided matrix equation must be solved: 

1 2 ,T U K U=    

where 
1U  and 

2U  are unknown matrices, and ,T K  are 

known matrices. 

A general solution to the equation of this type is not known 

[23]. 

An attacker has two options for breaking this double KEP: 

A. In the first one, he must first solve the Tropical 

Matrix Power Function Problem 16, and then, 

knowing K, to solve The Semiring Action Problem; 

B. In the second one, the attacker does not know the 

matrix K. So, he needs to find a solution to (5), 

knowing only matrices T and M.   

Since such problems as those posed in B are not solved in 

the literature known to us, we believe that in both cases, the 

attacker needs to solve hard problems, which guarantees the 

security of the proposed scheme. 

 

VII. CONCLUSION 

In this paper, we introduced a new message encryption 

scheme based on the double key-exchange protocol.   For the 

first phase of the KEP, we constructed a key-exchange 

protocol using a matrix power function as the action of a 

tropical semiring on the set of matrices. The obtained 

common secret key serves as an input for the second phase of 

the KEP. 

For our protocols we suggest using both left and right 

action, as well as isomorphic tropical semirings 

min, ,min,+ =  +  and  
max, ,max,+ =  + .  

We note that in the KEP of the first phase, no power of a 

matrix is used, so all standard attacks based on solving the 

tropical discrete logarithm problem are not applicable here. 

Due to the fact that tropical matrices are non-invertible, the 

KEP of second phase is not vulnerable to linear algebra 

attacks. 

As it is well known, one of the advantages of tropical 

algebra over classical algebra is increased efficiency, since 

tropical addition is actually finding a minimum or maximum, 

and multiplication is usual addition.  

Therefore, we believe that the increased efficiency along 

with improved security makes our protocol very suitable for 

a cryptographic implementation. 
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