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I. INTRODUCTION 
Big Data refers to rapidly growing datasets with different 

sizes and complexities beyond the capability of traditional 
data base tools, properly manage and carefully analyse them. 
Huge amounts of data are created and captured in big 
quantities every day from many sorts of applications such as 
network sensors, public web, corporate applications, and 
other technologies. The flow of data is entering in such a rapid 
and complicated manner and must be managed, stored, and 
analyzed to offer knowledge necessary to improve those 
applications. 

Some applications were rely on time in their logic, such as 
data stream or streaming data management, processing, and 
analysing. These applications and their analytics must deal 
with data in real time and decisions must be made within a 
certain time frame. 

Businesses and enterprises can use Big Data analytics to 
learn more about their position and performance, and they can 
manipulate knowledge to improve decision-making process. 
The key difficulty of the big data stream is performance - 
much study in recent years has focused on the performance 
problem [1]. 

 

II. BACKGROUND 
A continuous transfer of information from one location to 

another over an extended period of time is common in real-
time applications [2]. A stream is a series of connected data, 
such as video and audio data. The term "data stream 
processing" refers to the process of processing these types of 
events. Event stream processing is a simplified version of 

composite event processing CEP that refers to processing a 
single stream. Streaming data, also known as event stream 
processing, is a continuous flow of data created by numerous 
sources and is a core idea in real-time analytics systems. Data 
streams can be processed, stored, analyzed, and displayed in 
real-time utilizing stream processing Technology [3]. The 
term "streaming" refers to never-ending data streams with no 
beginning or end that provide a constant stream of data that 
may be processed. 

Data streams are generated in a variety of forms and 
volumes by a variety of sources. They can all be collected to 
seamlessly acquire real-time information and analytics from 
a single source of data, from applications, networking 
devices, and server log files to website activity, banking, 
transactions, and internet of things (IOT) sensors. 

The concept of an event is central to many modeling and 
implementation methodologies for growing real-time 
applications. An event is occurring in the system environment 
for which event-driven computing can provide a more 
appropriate reaction and higher throughput [3]. 

EP stands for event processing, which is computing that 
performs actions on events as they are reported in a system 
that monitors or listens to events in the environment. Reading, 
producing, altering, and processing events are all common 
information processing operations [4]. 

Many event processing applications are built to interact 
with events from the environment, and their design adheres 
to event-driven architecture principles. 

For situations when action must be done as so as on 
feasible, event stream processing is critical. This is why event 
stream processing environments are often described as real-
time processing. 
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A. Event Stream Processing and Data Stream Processing  
Stream processing and Complex Event Processing are the 

two primary aspects of the EP (CEP). The first step is event 
processing, which may be used for filtering, enrichment, 
classification, and joining, among other continuous analytics 
operations. CEP detects and reports composite events by 
looking for patterns in sequences of basic events. For 
operations on events that are distinct from the application 
logic, CEP offers event processing logic. This can save 
money on development and maintenance. The logic of event 
processing is frequently expressed in area-specific languages 
referred to as event processing languages (EPLs). Infosphere 
Streams [5], Tibco Stream Base [6], and Oracle Stream 
Explorer [7] are examples of enterprise scale CEP systems 
built by big corporate vendors like IBM, Tibco, and Oracle.  

The development of various data stream processing and 
analytics platforms is influenced by these systems. 

An event processing system (EPS) uses event type and 
patterns to process data related to events entering from the 
environment. Event type identifies properties of events that 
occur in the environment. The time stamp when an event 
occurred and various data kinds connected with event load 
are characteristics of an event type, but event patterns indicate 
relationships between events in the actual world [8].  

B. Real Time Big Data Systems  
A real-time system is one in which IT systems must 

process events as they occur and within a set time interval. 
Depending on the system, this time period is in the mille, 
micro, or even nanosecond range. Real-time systems are 
frequently assumed to be those in which accuracy is 
dependent on timeliness [9]. The following are the most 
significant qualities of a real-time system: 

 The period between an event occurring in the system's 
environment and the start of its processing is referred to as 
latency.  

Availability refers to a system's ability to perform its 
function when it is needed. High availability is required for 
real-time systems; otherwise, events are not handled 
immediately and are difficult to store or buffer for subsequent 
processing, particularly when dealing with high volume and 
high velocity data streams. 

Also Horizontal Scalability, Mean the system's ability to 
add servers to an existing pool in order to increase capacity 
and performance. For real-time systems to ensure that data is 
processed in predefined time intervals, the ability to 
dynamically add new servers as data volume and workload 
demands is vital [9]. 

C. Batch Processing  
When a collection of transactions is accumulated over 

time, it is a time-saving approach of processing massive 
volumes of data. Data is gathered, inputted, and processed 
before batch results are generated. The basic purpose of a 
batch processing system is to keep all of the tasks in a batch 
running at the same time. 

D. Real Time Processing  
Real-time processing systems are extremely rapid and 

responsive. These systems are employed in situations when a 
huge number of events need to be accepted and handled 

quickly. Real-time processing necessitates rapid transactions 
and is characterized by prompt responses. 

Data must be downloaded in batches before it can be 
processed, stored, or analyzed in batch data processing 
methods, whereas streaming data comes in constantly and 
may be treated at the same time [13]. 

 

III. REAL TIME BIG DATA ANALYTIC PLATFORM   
The lowest layer of the diagram displays the infrastructure 

platforms that are necessary to provide computing resources 
for the development of analytics systems. IBM, Oracle, and 
Tico's traditional enterprise distributed systems, as well as 
cloud PaaS [15], [16], are examples.  

 

 
Fig. 1. Real time analytic platform [16]. 

 
The second tier illustrates big data platforms, which are 

software platforms that handle enormous amounts of data, 
either batch or stream data, leveraging the underlying 
resources provided by infrastructure Platforms. Stored data is 
handled by Hadoop and Spark, while stream data is analyzed 
using Kafka and Storm. The analytics approaches and tools 
are depicted in the following tier. This layer, which may be 
thought of as a library of techniques to generate analytics 
solutions for specific business issues, involves text 
processing and machine learning methods and models, either 
real-time or stored data layers. It's tough to fit all of today's 
technologies and solutions onto a single layer. Microsoft 
Azure and Amazon provide components for the majority of 
these tiers [16]. 

A. Big data Stream Processing Tools 
Data stream processing techniques such as Apache 

Hadoop, Apache Spark, and Apache Storm demonstrate that 
earlier approaches, like Map Reduce, do not allow for real-
time processing despite the ability to analyse a high volume 
of data and the speed with which the data arrives [14]. 

1) Hadoop 
Hadoop is an open-source software platform for scalable, 

dependable, distributed computing and large-scale processing 
[17]. It was built as a batch processing system to handle 
processing massive data collections of structured, 
unstructured, and semi-structured data. 

As a result, it does not meet the performance requirements 
for real-time data analytics. By combining Hadoop with the 
Apache Storm environment, Hadoop may be used for real-
time processing in this case. 

Hadoop is made up of several components [18]: 
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1) Map Reduce is a model environment for distributed 
data processing that works on huge clusters of 
commodity processors. In batch mode, Map Reduce 
was utilized to handle large amounts of data [18], [19]. 

2) HDFS (Hadoop Distributed File System) is a 
distributed file system for large clusters of computers. 
HDFS is a file system for storing massive amounts of 
data. 

3) YARN (Yet another Resource Negotiator) is the 
Hadoop Yarn administrator who is in charge of cluster 
management in the system. 

Hadoop has a master-slave design with two servers, which 
are the foundations of the Map Reduce framework, a single 
master node, and a number of worker nodes [20]. HDFS is a 
distributed, scalable, and robust storage system that can easily 
collaborate with Map Reduce [21]. Through the network, it 
provides a substantial amount of aggregate bandwidth. HDFS 
is made up of two parts: a master node called name node and 
data nodes. 

 Map Reduce, created by Google in 2004, is a fault-tolerant 
framework for processing massive volumes of data in parallel 
on big clusters of computers. [22], [23]. It is divided into two 
phases: the map and reduce phase [22], and the reduce phase 
[24]. 

Due to its elasticity and scalability, Map Reduce is a fault-
tolerant framework for batch processing of massive volumes 
of data. But it is not a viable meth od for real-time processing. 

Many key components of the Hadoop ecosystem, including 
as hive, zookeeper, Kafka, and Flume, remain to deal with 
various databases and data types. 

The Apache Software Foundation created Kafka, an open-
source message broker system built in Scala [25]. Kafka 
processes reads and writes from thousands of clients at a high 
rate of gigabytes per second. To provide high availability and 
horizontal scalability, data streams are segregated and 
scattered throughout a cluster of computers [25], [26]. Kafka 
relies on Zookeeper for political coordination of processing 
nodes in the sensitive Hadoop environment. For 
configuration management, naming, and distributed 
synchronization, Zookeeper obtains a centralized service. 

Flume is a distributed, dependable, and available service 
for gathering, aggregating, and transporting huge volumes of 
log data in a professional manner. It features a 
straightforward and adaptable design based on streaming data 
flows [27]. It has configurable reliability and recovery 
methods and is resilient and fault resistant. It employs a 
simple data model that enables online analytic applications. 

Flume and Kafka are the event mainstays for real-time 
processing, and they each offer their own set of features. 
Kafka is ideal for high-volume communications systems that 
need scalability and availability. Flume is more suitable for 
data input and basic event processing, however it is not 
suitable for CEP applications. Flume and Kafka are used in 
tandem by several real-time applications to govern their own 
characteristics [28], [29]. 

2) SPARK 
Spark is a distributed computing framework that is open-

source [30]. It's a collection of useful tools and software 
components organized into a logical framework. AMP Lab at 

the University of California, Berkeley, usually develops and 
designs it. 

Spark conducts a cluster-level data read and all relevant 
analytical operations by publishing the findings to the same 
level. 
Spark is developed in Scala, although it can also be used with 
Java and Python [31]. 

The fundamental distinction between Map Reduce and 
Spark in Hadoop is that Map Reduce works in stages, whereas 
Spark works on all data at the same time. Batch processing 
can be up to ten times quicker, while in-memory analysis can 
be up to a hundred times faster. All task analysis activities are 
normally performed in memory and in real time by Spark 
[32]. It only uses disks when its memory becomes 
insufficient. Hadoop, on the other hand, writes data to disk 
after each successful process. 

Spark, on the other hand, lacks a file management 
mechanism. Hadoop Distributed File System is used. 

3) STORM 
Storm [34] is a distributed, fault-tolerant, and processing-

guaranteed real-time processing system. Storm was founded 
at Back Type, a private company that was purchased by 
Twitter in 2011. It is an Eclipse Public License-licensed 
open-source project. 

Storm completes what Hadoop achieved for batch 
processing in real-time by making cognitive processing of 
unlimited data flows clear and trustworthy. The storm is 
simple to use and may be implemented in any computer 
language [34], [35]. 

A storm cluster typically consists of three essential nodes: 
The Hadoop Job Tracker's equivalent is Nimbus. 
Supervisor: Responsible for starting and finishing the creative 
process. 

Zookeeper: A node that acts as the storm cluster's common 
coordinating service. 

Storm uses a variety of topologies known as spouts and 
bolts, whereas Hadoop uses Map Reduce jobs. Storm is a 
real-time distributed computing system that can manage 
massive amounts of data. 

In stream computing, Spout reads from a queuing broker 
such as Kafka, but it may also construct its own stream. 

Bolt: any number of input streams can be handled, as well as 
any number of new output streams [37]-[38].

 
Fig. 2. Spout and bolt technology [36]. 
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IV. RELATED WORK 
Millions of Likes are added to Facebook every second 

throughout the world. Millions of new websites are launched, 
and a large number of presidential tweets are sent out. All 
these multiple internet technology performers produce very 
large data point and information in the form of streamed data. 
While processing a vast quantity of data from many sources, 
including as sensor networks, online traffic, social media, 
video streams, and other sources, remains a substantial 
difficulty [39], processing a data stream in real time remains 
a vital issue for multiple applications. 

Hadoop is a fault-tolerant framework with excellent 
scalability. It processes large amounts of data in batches and 
provides useful insight into more historical data. Map Reduce 
is unsuited for real-time stream processing, since processing 
data as soon as it arrives is critical [39]. 
Lambda, Kappa, and Delta are three current designs that are 
often based on real-time processing: 

A. Lambda Architecture 
An architecture that combines real-time and batch 

processing in a single framework gives minimal latency and 
excellent outcomes [40].Serving layer: Combines the batch 
and speed layer's findings [41]. 

Batch layer allows for complicated pre-computation of 
large volumes of data in batches. Speed layer only processes 
current data to update the services layer's high latency. 
Because frequent updates would create delay, this layer only 
updates once and is used for initial processing.  

 

 
Fig. 3 Lambda architecture [34]. 

 
Map Reduce is a type of batch processing that may be 

utilized in a variety of situations [41]-[42]. The Serving layer 
then computes in real-time, with the ultimate objective of 
reducing latency by properly completing real-time 
computations as soon as data arrives. 

The lambda design reveals a number of issues [43]: 
In the real-time and batch layers, the business logic is 

implemented twice. In a distributed system, the code was 
generated twice [44]. 

When Lambda does asynchronous processing correctly, 
the outputs are not immediately comparable to contemporary 
data. 

The outcome of a sophisticated Operational is massive, and 
it takes a long time to complete. 

Managing two operating systems for batch and speed 
layers is a significant operational burden. 

B. Kappa Architecture 
Kappa architecture [45] is a lambda architecture 

simplification. Jay Kreps created it in 2014. A Kappa 
architecture is similar to a lambda design, but without the 
batch processing mechanism. Data is sent fast using the 
streaming technology [45]. Append-only approach for storing 
data in a Kappa Architecture in a permanent log, rather than 
using a relational database like SQ. Data is fed to computation 
from this log and then communicated to supplemental storage 
for serving [41]. 

Kappa differs from lambda in that it uses only one piece of 
code for two levels, reducing system complexity [45]. Figure 
13 shows the Kappa design, which is made up of two layers: 
a stream processing layer that conducts stream processing 
tasks and a serving layer for querying the results [4]. 
Customers may build their systems on top of the processing 
framework, which benefits Kappa while also satisfying the 
requirement for data integrity and streaming processing 
because real-time processing is possible. The Kappa 
architecture was built using Storm, Spark, and Kafka [47]. 

C. Delta Architecture  
Delta architecture often consists of numerous processing 

layers, each of which has various processing components that 
are independent of one another. Layers function in a loosely 
connected fashion as both consumers and producers. 

For example, Kafka may be used at this tier to create a low-
latency append messing system. Logs store a large amount of 
data in a natural sequential sequence over a period of time. At 
the time, the phrase "communication medium" meant a 
specific implementation of a log [48]. 

The log stores data from a number of sources, allowing for 
quick query responses and data manipulation for various 
analysis objectives. Although query-answering is time-
saving, data from the store does not allow for real-time 
analysis like data from the log. [48] Although query-
answering services for data stores might be useful, we must 
remember that unlike logs, data from stores cannot be utilized 
for real-time analysis. 

When compared to the delta design, the main distinction 
between lambda and kappa architectures is that. 

Delta is a data lake, which means it gathers all of the data 
into one convenient location. The Lambda architecture is 
used for long-term batch data processing. Though the lambda 
design employs HDFS as a data lake, the data lake's most 
important feature is immutability. This might be viewed as a 
fault in the batch layer's data processing [49]. 

Any new streaming data is treated as an incremental record 
rather than as a new record in the Delta architecture. 
Furthermore, deal with patterns similar to Lambda, with the 
exception that Delta does not consider the data lake to be 
immutable, and batch processing can quickly alter the data 
lake's current data structures [50]. 

The delta symbol was also used to represent gradual 
change. When new data is produced, modified, or streamed 
since the last processing time, incremental changes in data 
processing occur organically. With current technology, file 
systems directly handle CRUD (Create-Read-Update-Delete) 
activities. 

The issue is that the HDFS-based data lake is designed with 
immutability, which results in performance overhead in the 
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layers [51]. 
Data Lake is considered immutable by the Delta 

architecture, which treats incoming data as delta records 
rather than append-only contemporary records. 

 

V. DISCUSSION 
Lambda, Kappa and Delta are three architectural styles 

covered in this study. Architecture of big data processing is 
critical for real-time analytics. Lambda's architecture is made 
up of three levels: layer of batch, layer of query and layer of 
querying. The batch and speed layers' results are merged. And 
the stratum of speed: To compensate for the significant 
latency of the services layer updates, only the most current 
data is processed. 

In the real-time and batch layers, the business logic is 
implemented twice. The programmers must maintain code on 
two different distributed systems. It manages the Master 
Dataset, which is a set of immutable, append-only, and 
exclusive raw data, as well as batch views. Kappa 
Architecture is a permanent append-only log. Data is 
streamed from the log to a computing system and then 
transferred to auxiliary storage for serving the log. Kappa 
uses only one code route, which decreases system complexity 
and performance. It does not need a batch layer to prove 
findings from a real-time layer. 

The table below compares and contrasts the three 
architectures. 

 
TABLE I: COMPARES AND CONTRASTS OF THE THREE ARCHITECHTURES 

Criteria Lambda Kappa Delta 
Architecture Immutable Immutable none immutable 

Layers 
Real-time 

layer, batch, 
and serving 

Serving and 
stream processing 

layer 

Several layers 
 

Processing 
data 

Real and 
Batch real-time Batch and real 

time 

Processing 
guarantees 

batch mode, 
but 

approximate 
streaming 

mode 
approximate 

streaming 
mode 

With consistency 
exactly once. 

batch mode, but 
approximate 

streaming mode 

Re-processing 
paradigm 

In every 
batch cycle 

Just when code 
change 

In every layer 

Scalability yes yes yes 
fault tolerance yes yes yes 

permanent 
storage yes yes yes 

Real-time It is not 
correct 

Accurate Not accurate 

VI. CONCLUSION 
Because of the sophisticated calculations of historical data 

collected, as well as technical improvements and the situation 
of everyday life, real-time big data analytics is critical. The 
need for rapid access to information and the ability to make 
decisions is expanding. Allow society to reap the rewards and 
make timely, well-informed decisions. A well-conducted 
literature survey benefits from real-time data analytics. 
Future researchers and data scientists will be able to improve 
their businesses and technologies by categorizing real-time 

data analytics methods according to their various areas of 
application and tools used by categorizing real-time data 
analytics methods according to their various areas of 
application and tools used. 

Processing and analysing a vast volume of data in real time 
(data stream) while balancing throughput, reaction time, and 
data quality has become a significant issue with the recent 
emergence of real time data streaming and big data. 

The three designs are more concerned with managing 
performance difficulties by balancing throughput and 
reaction time than with data quality issues and data analysis 
findings. 

The map reduction technology in Hadoop provides a 
distributed computing platform for processing huge datasets 
on larger clusters; however it does not support real-time 
processing. A robust system that satisfies real-time 
specification standards is necessary to overcome the 
constraints of the old system. 

Data stream technology was explored in this paper to 
evaluate which application fields can benefit from real-time 
big data applications, as well as how to organize, manage, 
analyse data streams. To build effective real-time big data 
applications, a number of difficulties must be addressed, 
including real-time event (data) transfer, real-time scenario 
(exceptions) recognition, real-time decision making, and 
executing real-time responses. The first step in creating more 
effective and efficient apps in this industry is to thoroughly 
appreciate the complex nature of these apps and the 
challenges that lie ahead. 

The development and usage of real-time big data 
applications will be greatly aided by successful ways to 
addressing these difficulties, which will give several benefits 
such as saving lives, improving quality of life, decreasing 
risks, and increasing profitability. 

This paper's main purpose is to provide a real-time 
processing and analytic architecture for real-time large data 
analytics. Apache Storm helps you to process large amounts 
of data quickly and efficiently. In addition, a variety of open-
source Real-time processing technologies, like as Hadoop, 
Storm, and Spark, is frequently used in this design. 
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