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ABSTRACT

The conventional approach of evaluating massive data is inappropriate for
real-time analysis; therefore, analyzing big data in a data stream remains a
critical issue for numerous applications. It is critical in real-time big data
analytics to process data at the point where they are arriving at a quick
reaction and good decision making, necessitating the development of a novel
architecture that allows for real-time processing at high speed and low
latency. Processing and analysing a data stream in real-time is critical for a
variety of applications; however, handling a large amount of data from a
variety of sources, such as sensor networks, web traffic, social media, video
streams, and other sources, is a considerable difficulty. The main goal of this
paper is to give an overview of the current architecture for real time big data
analytics, real-time data stream processing methods available, including their
system architectures Lambda, kappa, and delta large data stream processing.
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I. INTRODUCTION

Big Data refers to rapidly growing datasets with different
sizes and complexities beyond the capability of traditional
data base tools, properly manage and carefully analyse them.
Huge amounts of data are created and captured in big
quantities every day from many sorts of applications such as
network sensors, public web, corporate applications, and
other technologies. The flow of data is entering in such a rapid
and complicated manner and must be managed, stored, and
analyzed to offer knowledge necessary to improve those
applications.

Some applications were rely on time in their logic, such as
data stream or streaming data management, processing, and
analysing. These applications and their analytics must deal
with data in real time and decisions must be made within a
certain time frame.

Businesses and enterprises can use Big Data analytics to
learn more about their position and performance, and they can
manipulate knowledge to improve decision-making process.
The key difficulty of the big data stream is performance -
much study in recent years has focused on the performance
problem [1].

II. BACKGROUND

A continuous transfer of information from one location to
another over an extended period of time is common in real-
time applications [2]. A stream is a series of connected data,
such as video and audio data. The term "data stream
processing" refers to the process of processing these types of
events. Event stream processing is a simplified version of
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composite event processing CEP that refers to processing a
single stream. Streaming data, also known as event stream
processing, is a continuous flow of data created by numerous
sources and is a core idea in real-time analytics systems. Data
streams can be processed, stored, analyzed, and displayed in
real-time utilizing stream processing Technology [3]. The
term "streaming" refers to never-ending data streams with no
beginning or end that provide a constant stream of data that
may be processed.

Data streams are generated in a variety of forms and
volumes by a variety of sources. They can all be collected to
seamlessly acquire real-time information and analytics from
a single source of data, from applications, networking
devices, and server log files to website activity, banking,
transactions, and internet of things (IOT) sensors.

The concept of an event is central to many modeling and
implementation methodologies for growing real-time
applications. An event is occurring in the system environment
for which event-driven computing can provide a more
appropriate reaction and higher throughput [3].

EP stands for event processing, which is computing that
performs actions on events as they are reported in a system
that monitors or listens to events in the environment. Reading,
producing, altering, and processing events are all common
information processing operations [4].

Many event processing applications are built to interact
with events from the environment, and their design adheres
to event-driven architecture principles.

For situations when action must be done as so as on
feasible, event stream processing is critical. This is why event
stream processing environments are often described as real-
time processing.
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A. Event Stream Processing and Data Stream Processing

Stream processing and Complex Event Processing are the
two primary aspects of the EP (CEP). The first step is event
processing, which may be used for filtering, enrichment,
classification, and joining, among other continuous analytics
operations. CEP detects and reports composite events by
looking for patterns in sequences of basic events. For
operations on events that are distinct from the application
logic, CEP offers event processing logic. This can save
money on development and maintenance. The logic of event
processing is frequently expressed in area-specific languages
referred to as event processing languages (EPLs). Infosphere
Streams [5], Tibco Stream Base [6], and Oracle Stream
Explorer [7] are examples of enterprise scale CEP systems
built by big corporate vendors like IBM, Tibco, and Oracle.

The development of various data stream processing and
analytics platforms is influenced by these systems.

An event processing system (EPS) uses event type and
patterns to process data related to events entering from the
environment. Event type identifies properties of events that
occur in the environment. The time stamp when an event
occurred and various data kinds connected with event load
are characteristics of an event type, but event patterns indicate
relationships between events in the actual world [8].

B.  Real Time Big Data Systems

A real-time system is one in which IT systems must
process events as they occur and within a set time interval.
Depending on the system, this time period is in the mille,
micro, or even nanosecond range. Real-time systems are
frequently assumed to be those in which accuracy is
dependent on timeliness [9]. The following are the most
significant qualities of a real-time system:

The period between an event occurring in the system's
environment and the start of its processing is referred to as
latency.

Availability refers to a system's ability to perform its
function when it is needed. High availability is required for
real-time systems; otherwise, events are not handled
immediately and are difficult to store or buffer for subsequent
processing, particularly when dealing with high volume and
high velocity data streams.

Also Horizontal Scalability, Mean the system's ability to
add servers to an existing pool in order to increase capacity
and performance. For real-time systems to ensure that data is
processed in predefined time intervals, the ability to
dynamically add new servers as data volume and workload
demands is vital [9].

C. Batch Processing

When a collection of transactions is accumulated over
time, it is a time-saving approach of processing massive
volumes of data. Data is gathered, inputted, and processed
before batch results are generated. The basic purpose of a
batch processing system is to keep all of the tasks in a batch
running at the same time.

D. Real Time Processing

Real-time processing systems are extremely rapid and
responsive. These systems are employed in situations when a
huge number of events need to be accepted and handled
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quickly. Real-time processing necessitates rapid transactions
and is characterized by prompt responses.

Data must be downloaded in batches before it can be
processed, stored, or analyzed in batch data processing
methods, whereas streaming data comes in constantly and
may be treated at the same time [13].

III. REAL TIME BIG DATA ANALYTIC PLATFORM

The lowest layer of the diagram displays the infrastructure
platforms that are necessary to provide computing resources
for the development of analytics systems. IBM, Oracle, and
Tico's traditional enterprise distributed systems, as well as
cloud PaaS [15], [16], are examples.

Specific solutions

Analytics techniques and functions

Data stream analytics platform Stored data analytics platform

Data stream processing platform Stored data processing platform

Cloud Enterprise distributed systems others

Fig. 1. Real time analytic platform [16].

The second tier illustrates big data platforms, which are
software platforms that handle enormous amounts of data,
either batch or stream data, leveraging the underlying
resources provided by infrastructure Platforms. Stored data is
handled by Hadoop and Spark, while stream data is analyzed
using Kafka and Storm. The analytics approaches and tools
are depicted in the following tier. This layer, which may be
thought of as a library of techniques to generate analytics
solutions for specific business issues, involves text
processing and machine learning methods and models, either
real-time or stored data layers. It's tough to fit all of today's
technologies and solutions onto a single layer. Microsoft
Azure and Amazon provide components for the majority of
these tiers [16].

A. Big data Stream Processing Tools

Data stream processing techniques such as Apache
Hadoop, Apache Spark, and Apache Storm demonstrate that
earlier approaches, like Map Reduce, do not allow for real-
time processing despite the ability to analyse a high volume
of data and the speed with which the data arrives [14].

1) Hadoop

Hadoop is an open-source software platform for scalable,
dependable, distributed computing and large-scale processing
[17]. It was built as a batch processing system to handle
processing massive data collections of structured,
unstructured, and semi-structured data.

As a result, it does not meet the performance requirements
for real-time data analytics. By combining Hadoop with the
Apache Storm environment, Hadoop may be used for real-
time processing in this case.

Hadoop is made up of several components [18]:
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1) Map Reduce is a model environment for distributed
data processing that works on huge clusters of
commodity processors. In batch mode, Map Reduce
was utilized to handle large amounts of data [18], [19].

2) HDFS (Hadoop Distributed File System) is a
distributed file system for large clusters of computers.
HDFEFS is a file system for storing massive amounts of
data.

3) YARN (Yet another Resource Negotiator) is the
Hadoop Yarn administrator who is in charge of cluster
management in the system.

Hadoop has a master-slave design with two servers, which
are the foundations of the Map Reduce framework, a single
master node, and a number of worker nodes [20]. HDFS is a
distributed, scalable, and robust storage system that can easily
collaborate with Map Reduce [21]. Through the network, it
provides a substantial amount of aggregate bandwidth. HDFS
is made up of two parts: a master node called name node and
data nodes.

Map Reduce, created by Google in 2004, is a fault-tolerant
framework for processing massive volumes of data in parallel
on big clusters of computers. [22], [23]. It is divided into two
phases: the map and reduce phase [22], and the reduce phase
[24].

Due to its elasticity and scalability, Map Reduce is a fault-
tolerant framework for batch processing of massive volumes
of data. But it is not a viable meth od for real-time processing.

Many key components of the Hadoop ecosystem, including
as hive, zookeeper, Kafka, and Flume, remain to deal with
various databases and data types.

The Apache Software Foundation created Kafka, an open-
source message broker system built in Scala [25]. Kafka
processes reads and writes from thousands of clients at a high
rate of gigabytes per second. To provide high availability and
horizontal scalability, data streams are segregated and
scattered throughout a cluster of computers [25], [26]. Kafka
relies on Zookeeper for political coordination of processing
nodes in the sensitive Hadoop environment. For
configuration management, naming, and distributed
synchronization, Zookeeper obtains a centralized service.

Flume is a distributed, dependable, and available service
for gathering, aggregating, and transporting huge volumes of
log data in a professional manner. It features a
straightforward and adaptable design based on streaming data
flows [27]. It has configurable reliability and recovery
methods and is resilient and fault resistant. It employs a
simple data model that enables online analytic applications.

Flume and Kafka are the event mainstays for real-time
processing, and they each offer their own set of features.
Kafka is ideal for high-volume communications systems that
need scalability and availability. Flume is more suitable for
data input and basic event processing, however it is not
suitable for CEP applications. Flume and Kafka are used in
tandem by several real-time applications to govern their own
characteristics [28], [29].

2) SPARK

Spark is a distributed computing framework that is open-
source [30]. It's a collection of useful tools and software
components organized into a logical framework. AMP Lab at
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the University of California, Berkeley, usually develops and
designs it.

Spark conducts a cluster-level data read and all relevant
analytical operations by publishing the findings to the same
level.

Spark is developed in Scala, although it can also be used with
Java and Python [31].

The fundamental distinction between Map Reduce and
Spark in Hadoop is that Map Reduce works in stages, whereas
Spark works on all data at the same time. Batch processing
can be up to ten times quicker, while in-memory analysis can
be up to a hundred times faster. All task analysis activities are
normally performed in memory and in real time by Spark
[32]. It only uses disks when its memory becomes
insufficient. Hadoop, on the other hand, writes data to disk
after each successful process.

Spark, on the other hand, lacks a file management
mechanism. Hadoop Distributed File System is used.

3) STORM

Storm [34] is a distributed, fault-tolerant, and processing-
guaranteed real-time processing system. Storm was founded
at Back Type, a private company that was purchased by
Twitter in 2011. It is an Eclipse Public License-licensed
open-source project.

Storm completes what Hadoop achieved for batch
processing in real-time by making cognitive processing of
unlimited data flows clear and trustworthy. The storm is
simple to use and may be implemented in any computer
language [34], [35].

A storm cluster typically consists of three essential nodes:
The Hadoop Job Tracker's equivalent is Nimbus.

Supervisor: Responsible for starting and finishing the creative
process.

Zookeeper: A node that acts as the storm cluster's common
coordinating service.

Storm uses a variety of topologies known as spouts and
bolts, whereas Hadoop uses Map Reduce jobs. Storm is a
real-time distributed computing system that can manage
massive amounts of data.

In stream computing, Spout reads from a queuing broker
such as Kafka, but it may also construct its own stream.
Bolt: any number of input streams can be handled, as well as
any number of new output streams [37]-[38].

"e\‘
o

o™
Streams C

S,

Streams C Streams C

Spout B Bolt € fonl

Fig. 2. Spout and bolt technology [36].
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IV. RELATED WORK

Millions of Likes are added to Facebook every second
throughout the world. Millions of new websites are launched,
and a large number of presidential tweets are sent out. All
these multiple internet technology performers produce very
large data point and information in the form of streamed data.
While processing a vast quantity of data from many sources,
including as sensor networks, online traffic, social media,
video streams, and other sources, remains a substantial
difficulty [39], processing a data stream in real time remains
a vital issue for multiple applications.

Hadoop is a fault-tolerant framework with excellent
scalability. It processes large amounts of data in batches and
provides useful insight into more historical data. Map Reduce
is unsuited for real-time stream processing, since processing
data as soon as it arrives is critical [39].

Lambda, Kappa, and Delta are three current designs that are
often based on real-time processing:

A. Lambda Architecture

An architecture that combines real-time and batch
processing in a single framework gives minimal latency and
excellent outcomes [40].Serving layer: Combines the batch
and speed layer's findings [41].

Batch layer allows for complicated pre-computation of
large volumes of data in batches. Speed layer only processes
current data to update the services layer's high latency.
Because frequent updates would create delay, this layer only
updates once and is used for initial processing.

BATCH LAYER

IMMUTABLE O PRECOMPUTE

SERVINGLAYER

REAL-TIME VIEWS

INCREMENT
VIEWS

View 1 ViewN

PROCESS
STREAM

SPEED LAYER

Fig. 3 Lambda architecture [34].

Map Reduce is a type of batch processing that may be
utilized in a variety of situations [41]-[42]. The Serving layer
then computes in real-time, with the ultimate objective of
reducing latency by properly completing real-time
computations as soon as data arrives.

The lambda design reveals a number of issues [43]:

In the real-time and batch layers, the business logic is
implemented twice. In a distributed system, the code was
generated twice [44].

When Lambda does asynchronous processing correctly,
the outputs are not immediately comparable to contemporary
data.

The outcome of a sophisticated Operational is massive, and
it takes a long time to complete.

Managing two operating systems for batch and speed
layers is a significant operational burden.
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B.  Kappa Architecture

Kappa architecture [45] is a lambda architecture
simplification. Jay Kreps created it in 2014. A Kappa
architecture is similar to a lambda design, but without the
batch processing mechanism. Data is sent fast using the
streaming technology [45]. Append-only approach for storing
data in a Kappa Architecture in a permanent log, rather than
using a relational database like SQ. Data is fed to computation
from this log and then communicated to supplemental storage
for serving [41].

Kappa differs from lambda in that it uses only one piece of
code for two levels, reducing system complexity [45]. Figure
13 shows the Kappa design, which is made up of two layers:
a stream processing layer that conducts stream processing
tasks and a serving layer for querying the results [4].
Customers may build their systems on top of the processing
framework, which benefits Kappa while also satisfying the
requirement for data integrity and streaming processing
because real-time processing is possible. The Kappa
architecture was built using Storm, Spark, and Kafka [47].

C. Delta Architecture

Delta architecture often consists of numerous processing
layers, each of which has various processing components that
are independent of one another. Layers function in a loosely
connected fashion as both consumers and producers.

For example, Kafka may be used at this tier to create a low-
latency append messing system. Logs store a large amount of
data in a natural sequential sequence over a period of time. At
the time, the phrase "communication medium" meant a
specific implementation of a log [48].

The log stores data from a number of sources, allowing for
quick query responses and data manipulation for various
analysis objectives. Although query-answering is time-
saving, data from the store does not allow for real-time
analysis like data from the log. [48] Although query-
answering services for data stores might be useful, we must
remember that unlike logs, data from stores cannot be utilized
for real-time analysis.

When compared to the delta design, the main distinction
between lambda and kappa architectures is that.

Delta is a data lake, which means it gathers all of the data
into one convenient location. The Lambda architecture is
used for long-term batch data processing. Though the lambda
design employs HDFS as a data lake, the data lake's most
important feature is immutability. This might be viewed as a
fault in the batch layer's data processing [49].

Any new streaming data is treated as an incremental record
rather than as a new record in the Delta architecture.
Furthermore, deal with patterns similar to Lambda, with the
exception that Delta does not consider the data lake to be
immutable, and batch processing can quickly alter the data
lake's current data structures [50].

The delta symbol was also used to represent gradual
change. When new data is produced, modified, or streamed
since the last processing time, incremental changes in data
processing occur organically. With current technology, file
systems directly handle CRUD (Create-Read-Update-Delete)
activities.

The issue is that the HDFS-based data lake is designed with
immutability, which results in performance overhead in the
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layers [51].

Data Lake is considered immutable by the Delta
architecture, which treats incoming data as delta records
rather than append-only contemporary records.

V. DISCUSSION

Lambda, Kappa and Delta are three architectural styles
covered in this study. Architecture of big data processing is
critical for real-time analytics. Lambda's architecture is made
up of three levels: layer of batch, layer of query and layer of
querying. The batch and speed layers' results are merged. And
the stratum of speed: To compensate for the significant
latency of the services layer updates, only the most current
data is processed.

In the real-time and batch layers, the business logic is
implemented twice. The programmers must maintain code on
two different distributed systems. It manages the Master
Dataset, which is a set of immutable, append-only, and
exclusive raw data, as well as batch views. Kappa
Architecture is a permanent append-only log. Data is
streamed from the log to a computing system and then
transferred to auxiliary storage for serving the log. Kappa
uses only one code route, which decreases system complexity
and performance. It does not need a batch layer to prove
findings from a real-time layer.

The table below compares and contrasts the three
architectures.

TABLE I: COMPARES AND CONTRASTS OF THE THREE ARCHITECHTURES

Criteria Lambda Kappa Delta
Architecture Immutable Immutable none immutable
Real-time Serving and
. Several layers
Layers layer, batch,  stream processing
and serving layer
Processing Real and . Batch and real
real-time .
data Batch time
batch mode,
but
approximate
. PP . . . batch mode, but
Processing streaming With consistency .
approximate
guarantees mode exactly once. .
. streaming mode
approximate
streaming
mode
Re-processin; In eve Just when code
P . g Y In every layer
paradigm batch cycle change
Scalability yes yes yes
fault tolerance yes yes yes
permanent cs cs s
storage y ¥ ¥
. It is not
Real-time Accurate Not accurate
correct

VI. CONCLUSION

Because of the sophisticated calculations of historical data
collected, as well as technical improvements and the situation
of everyday life, real-time big data analytics is critical. The
need for rapid access to information and the ability to make
decisions is expanding. Allow society to reap the rewards and
make timely, well-informed decisions. A well-conducted
literature survey benefits from real-time data analytics.
Future researchers and data scientists will be able to improve
their businesses and technologies by categorizing real-time
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data analytics methods according to their various areas of
application and tools used by categorizing real-time data
analytics methods according to their various areas of
application and tools used.

Processing and analysing a vast volume of data in real time
(data stream) while balancing throughput, reaction time, and
data quality has become a significant issue with the recent
emergence of real time data streaming and big data.

The three designs are more concerned with managing
performance difficulties by balancing throughput and
reaction time than with data quality issues and data analysis
findings.

The map reduction technology in Hadoop provides a
distributed computing platform for processing huge datasets
on larger clusters; however it does not support real-time
processing. A robust system that satisfies real-time
specification standards is necessary to overcome the
constraints of the old system.

Data stream technology was explored in this paper to
evaluate which application fields can benefit from real-time
big data applications, as well as how to organize, manage,
analyse data streams. To build effective real-time big data
applications, a number of difficulties must be addressed,
including real-time event (data) transfer, real-time scenario
(exceptions) recognition, real-time decision making, and
executing real-time responses. The first step in creating more
effective and efficient apps in this industry is to thoroughly
appreciate the complex nature of these apps and the
challenges that lie ahead.

The development and usage of real-time big data
applications will be greatly aided by successful ways to
addressing these difficulties, which will give several benefits
such as saving lives, improving quality of life, decreasing
risks, and increasing profitability.

This paper's main purpose is to provide a real-time
processing and analytic architecture for real-time large data
analytics. Apache Storm helps you to process large amounts
of data quickly and efficiently. In addition, a variety of open-
source Real-time processing technologies, like as Hadoop,
Storm, and Spark, is frequently used in this design.
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