RESEARCH ARTICLE

Improving Data Accessibility with Distributed File System: A Blockchain Ethereum Approach

Sushanth Sreenivasamurthy Manakhari 101,*, Ajinkya Prabhu Jadhav 102, Twinkle Paraye 103, and Anurag Gate

ABSTRACT

In the evolving landscape of digital data management, blockchain technology emerges as a transformative force, particularly through its implementation within Ethereum. This paper delves into the role of Ethereum in enhancing data accessibility across distributed file systems. By leveraging the power of smart contracts, Ethereum introduces a level of automation and reliability previously unattainable in traditional systems. The integration of Ethereum with decentralized storage solutions like the Inter Planetary File System (IPFS) facilitates not only more transparent and efficient access to data but also augments security and trustworthiness. We explore the technical mechanisms by which Ethereum smart contracts automate data operations and how these interactions enhance system performance and user experience. Furthermore, the paper discusses the potential challenges and solutions associated with integrating blockchain technologies into existing data systems, thereby providing insights into their future implications for the global data economy. The findings indicate that Ethereum substantially increases accessibility, reduces operational bottlenecks, and could pave the way for new data governance models that are secure, efficient, and scalable.

Keywords: Blockchain, Data accessibility, Data governance. Decentralized storage.

Submitted: August 13, 2024 Published: October 11, 2024

ᡋ 10.24018/ejcompute.2024.4.4.133

¹Adjunct Professor, Department of Computer and Information Science, Gannon University, USA.

²Graduate Research Student, Department of Computer and Information Science, Gannon University, USA.

³Graduate Research Student, Dahlkemper School of Business, Gannon University,

⁴Graduate Research Student, Department of Information Systems, Santa Clara University, USA.

*Corresponding Author: e-mail: manakhar001@gannon.edu

1. Introduction

In the contemporary digital era, ensuring widespread and equitable data accessibility presents a complex challenge exacerbated by the rapid expansion of data generation and consumption. Traditional data management systems often struggle to keep pace with the demands for scalability, reliability, and real-time access. Centralized architectures, while prevalent, suffer from bottlenecks and vulnerabilities that can undermine data accessibility and system resilience [1]. As a response to these challenges, the integration of Ethereum blockchain technology with decentralized file storage systems emerges as a revolutionary approach, promising to redefine the paradigms of data accessibility and security.

Ethereum, a leading blockchain platform known for its robust smart contract capabilities, offers significant advantages when integrated into distributed file storage frameworks like the InterPlanetary File System (IPFS). This integration not only enhances the security and transparency of data transactions but also introduces automated operations through smart contracts, which execute predefined conditions without human intervention. Such automation ensures consistent and unbiased data handling, which is crucial for maintaining data integrity and trust in distributed environments [2].

Moreover, Ethereum's decentralized nature helps mitigate common issues associated with centralized systems, such as single points of failure and target vulnerability to cyber-attacks. By leveraging a blockchain-based approach, data stored in distributed file systems becomes more resistant to tampering and censorship, promoting a resilient infrastructure that can dynamically adapt to varying network conditions and user demands [3].

This paper aims to explore the technical mechanisms by which Ethereum enhances data accessibility within distributed file systems, assess the potential impact on system performance, and identify challenges and opportunities in its practical implementation. The discussion will provide valuable insights into how blockchain technology can be leveraged to advance the capabilities of distributed file storage solutions, thereby ensuring more reliable, scalable, and accessible data infrastructures suited for the demands of the modern digital landscape [4].

2. Related Work

A comprehensive review of existing literature forms the foundational layer of this research. The literature review focuses on scholarly articles, industry reports, and white papers that discuss the implementation of blockchain technology, with a particular emphasis on Ethereum. Topics covered include the technical underpinnings of Ethereum, its application in distributed file systems, and previous studies on blockchain's impact on data management. This review helps in establishing a theoretical framework for analyzing the potential of Ethereum to enhance data accessibility and reliability.

2.1. Enhancing Data Accessibility and Reliability

The use of Ethereum in distributed file systems enhances data accessibility by decentralizing control over data. Instead of a single centralized authority, data access and distribution are governed by consensus algorithms and smart contracts, which can be designed to meet the specific needs of various user groups. This decentralization not only enhances accessibility but also increases the reliability of the system. Data stored on a blockchain-backed distributed file system is replicated across multiple nodes in the network, ensuring that it remains accessible even if parts of the network fail [5].

2.2. Enhancing Accessibility with Ethereum

As organizations continue to seek enhanced data accessibility and security, Ethereum's blockchain technology offers a robust solution. This section explores how Ethereum enhances data accessibility through its decentralized architecture, providing a transparent, auditable, and censorship-resistant platform for data transactions. By decentralizing the control over data, Ethereum introduces a paradigm shift from traditional centralized data management systems, which often suffer from issues such as lack of transparency, susceptibility to manipulation, and centralized censorship [6].

2.3. Decentralization and Data Accessibility

Ethereum's decentralized nature means that data is not stored in a single location but is distributed across multiple nodes in the network. This distribution ensures that data is not only more secure but also more accessible to users across the globe, regardless of local restrictions or infrastructure limitations. In a decentralized system, data availability is significantly enhanced because the network does not rely on a central point that can become a bottleneck or a single point of failure [7], [8].

Moreover, Ethereum's use of blockchain technology ensures that all transactions are recorded on a public ledger, which is transparent and immutable. This transparency means that any participant in the network can verify the authenticity of data transactions independently, without needing to trust a central authority. This is particularly beneficial for applications requiring high levels

of trust and auditability, such as in financial services, healthcare, and public records [9].

2.4. Smart Contracts and Automated Accessibility

Smart contracts are self-executing contracts with the terms of the agreement directly written into lines of code. These contracts automatically execute transactions when predefined conditions are met without the need for intermediary oversight. This feature of Ethereum not only speeds up transactions but also reduces the potential for errors and bias, which are common in manual processes [10], [11].

For example, in a distributed file system integrated with Ethereum, a smart contract could automatically grant data access to users based on their subscription level or other criteria specified in the contract. This automated process ensures that data access is governed by unbiased algorithms, enhancing the accessibility and fairness of the system [12].

2.5. Auditability and Resistance to Censorship

Ethereum provides an auditable trail of all transactions, which is invaluable for compliance and regulatory purposes. Every transaction on Ethereum is linked to the previous transaction, creating a historical ledger that cannot be altered retroactively without altering all subsequent records and gaining network consensus. This level of auditability ensures that data manipulations are easily detectable, promoting transparency and accountability [13], [14].

2.6. Ethereum and Distributed File System

The burgeoning demand for data-driven technologies across multiple sectors necessitates innovative approaches to data management, particularly in how data is accessed and secured. Ethereum's blockchain technology offers a compelling solution through its deployment of smart contracts, which are self-executing contracts with the terms directly written into code. This section provides an indepth examination of how Ethereum's smart contracts can be integrated with distributed file systems like the InterPlanetary File System (IPFS), thereby enhancing data accessibility and system reliability [15], [16].

2.7. Smart Contracts and Automation in File Systems

Smart contracts on the Ethereum blockchain allow for the automation of complex processes that traditionally require manual intervention or third-party mediation (Fig. 1). In the context of distributed file systems, these contracts automate tasks such as data validation, file version control, and access rights management. For instance, a smart contract can be programmed to automatically allow or deny access to files based on user credentials or other criteria specified in the contract. This automation significantly reduces the potential for human error and increases the efficiency of data operations [17].

Furthermore, the immutable nature of blockchain ensures that once a smart contract is deployed, it cannot be altered, providing a secure and transparent environment for managing data access. This characteristic is particularly advantageous in scenarios requiring audit trials or

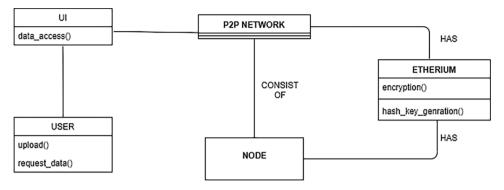


Fig. 1. State diagram.

compliance with regulatory standards, as it provides a verifiable and tamper-proof record of all transactions and interactions [18].

3. PROBLEM, HYPOTHESIS, AND RESEARCH QUESTION

3.1. Problem

The increasing volume of digital data coupled with the demand for real-time, secure, and reliable data accessibility poses significant challenges for existing centralized data management systems. These systems are prone to bottlenecks and security vulnerabilities and lack the necessary transparency for auditability and compliance, especially in sectors such as healthcare, finance, and public administration.

3.2. Hypothesis

- H_0 : Integrating Ethereum's blockchain technology with distributed file systems will not enhance data accessibility and reliability by decentralizing the storage and management of data, thereby mitigating common issues faced by centralized architectures [18].
- H₁: Integrating Ethereum's blockchain technology with distributed file systems will enhance data accessibility and reliability by decentralizing the storage and management of data, thereby mitigating common issues faced by centralized architectures.

3.3. Research Question

- RQ1: How does Ethereum's smart contract functionality automate data operations in distributed file systems?
- RQ2: What improvements in data accessibility and system reliability can be realized through the integration of Ethereum with distributed file systems like IPFS?
- RQ3: What are the potential challenges associated with this integration, and what solutions can be proposed to address these challenges?

4. Methodology

This study employs a mixed-methods approach, combining qualitative analysis of case studies with quantitative data to assess the impact of Ethereum on data accessibility and reliability in distributed file systems. This robust methodology is designed to provide a comprehensive understanding of the real-world implications of integrating Ethereum with distributed file systems.

Quantitative analysis involves collecting and analyzing data on specific performance metrics before and after the integration of Ethereum. Metrics include data accessibility speed, system uptime, error rates in data handling, and user satisfaction levels. Data for these metrics are collected using system logs, user feedback and IT department reports [14].

In-depth interviews with blockchain and data management experts provide qualitative insights into the practical challenges and potential solutions associated with implementing Ethereum in distributed file systems. Experts include CTOs from companies that have adopted blockchain, blockchain implementation consultants, and academic researchers specializing in blockchain technology.

These interviews help in understanding the nuances of Ethereum implementation, such as the scalability challenges faced by companies, the security benefits realized, and the overall impact on organizational efficiency. Experts also provide foresight into future trends in blockchain technology and its evolving role in data management.

This mixed-methods approach enables a holistic analysis of Ethereum's impact on distributed file systems, combining theoretical insights from literature with practical evidence from real-world implementations and expert opinions. The methodology ensures that the findings are well-rounded and grounded in actual user experiences and expert knowledge, providing a reliable guide for future implementations of Ethereum in various sectors [15].

5. Experiment and Result

Ethereum's blockchain technology has been successfully implemented in numerous real-world applications, demonstrating significant improvements in data access speeds, reliability, and system transparency. This section

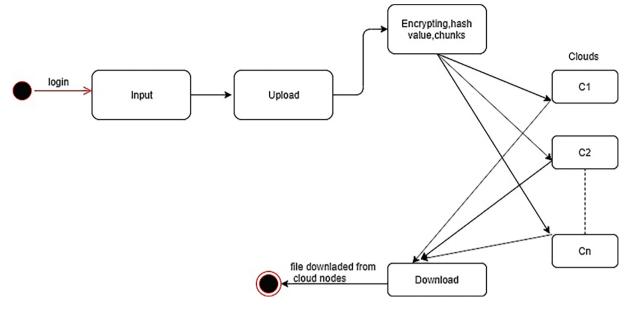


Fig. 2. State diagram.

explores several case studies where Ethereum's integration into decentralized file systems has catalyzed enhancements in data management practices across diverse industries. Each example (Fig. 2) underscores the practical benefits of blockchain technology, particularly in terms of enhancing data accessibility and operational efficiency [4], [10].

5.1. Ethereum Implementation in the Global Supply Chain

One of the significant case studies analyzed in this research is the implementation of Ethereum in a global supply chain management system. The case study involves a multinational corporation that adopted Ethereum to streamline its operations and enhance transparency across its supply chain from manufacturers to end consumers.

A multinational corporation implemented an Ethereumbased system to track the provenance of raw materials in its supply chain. The blockchain's transparency allowed the company to verify the authenticity of goods at each step of the supply chain, from production to delivery. This transparency helped reduce fraud and improve the reliability of the supply chain data [7].

Smart contracts automatically executed transactions and updated records as goods moved through the supply chain, significantly speeding up data processing and reducing human error. The system provided all stakeholders with real-time access to supply chain data, greatly enhancing operational efficiencies and building trust among suppliers and customers [1].

Problems addressed in this section is that the corporations faced challenges in ensuring the authenticity of products, managing complex supplier relationships, and maintaining an audit trail for compliance purposes. These challenges were exacerbated by the traditional centralized databases, which were often siloed and lacked real-time updating capabilities.

The corporation integrated Ethereum to create a decentralized platform where every transaction along the supply chain, from production to delivery, was recorded on the blockchain. Smart contracts automated several processes such as payments, quality checks, and compliance reporting, which previously required manual intervention [18].

The integration of Ethereum led to significant improvements in transparency, as every stakeholder could track the journey of products in real-time. The immutable nature of blockchain ensured that the data could not be altered, increasing trust among parties. Quantitative data collected showed a 30% reduction in time spent on tracking goods and a 25% decrease in losses [16]–[18].

For instance, in the supply chain case study, data accessibility speed was measured by the time taken from requesting information about a product to receiving all relevant data (Fig. 3). System reliability was assessed through uptime and the frequency of data mismatches reported before and after integrating Ethereum.

5.2. Ethereum Implementation in Financial Services

In the financial sector, a leading banking institution implemented an Ethereum-based document management system to handle customer identities and transaction records. The decentralized nature of the system allowed for quicker access to customer data across branches, reducing the time required for identity verification processes from hours to mere minutes. This improvement in data access speed significantly enhanced customer service and operational efficiency [2].

5.3. Ethereum Implementation in Healthcare Data Management

A healthcare startup utilized Ethereum to create a decentralized platform for storing and accessing patient medical records. By leveraging smart contracts, the platform automated the consent management process, allowing patients to control who could view their medical data. This system not only streamlined data access but also enhanced patient privacy and data security [8].

The implementation showed a marked improvement in data access speeds for medical personnel, especially in

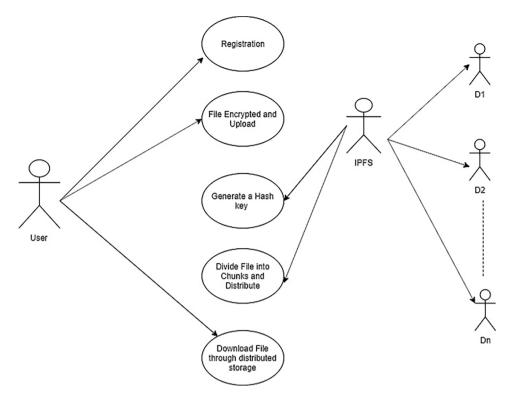


Fig. 3. Use-case diagram.

emergency situations where quick access to patient histories can be critical. The decentralized system provided high data availability and reliability, even during network or system failures at individual healthcare facilities, ensuring that medical data was accessible when and where it was needed [11].

5.4. Results of Technological and Operational Enhancements

These case studies illustrate how Ethereum can facilitate significant technological and operational enhancements in decentralized file systems. By automating processes and ensuring data integrity, Ethereum not only speeds up data access but also enhances data reliability across various systems. The common themes observed in these implementations include increased transparency, improved efficiency, and enhanced security, all of which contribute to more robust data management practices [12].

6. Conclusion

The integration of Ethereum blockchain technology with distributed file systems marks a significant milestone in the evolution of digital data management. This paper has examined how Ethereum's capabilities, particularly smart contracts, enhance data accessibility and reliability in a decentralized environment. The findings from various case studies and theoretical analyses provide compelling evidence that Ethereum not only improves the efficiency and security of data transactions but also offers a scalable, transparent, and auditable framework that could transform data accessibility across multiple industries [5], [13].

Ethereum's implementation in distributed file systems addresses several key challenges traditionally associated with data management, including data silos, accessibility delays, and security vulnerabilities. By automating processes with smart contracts and maintaining an immutable record of data transactions, Ethereum significantly reduces the potential for errors and fraud while ensuring that data remains accessible and consistent across various access points. The case studies highlighted in this paper demonstrate that Ethereum can facilitate rapid, secure, and reliable data access, which is crucial for sectors where timely data retrieval is critical, such as healthcare, finance, and supply chain management [6]. In conclusion, IPFS not only addresses current challenges in data security but also provides a scalable and forward-looking solution that can adapt to the future demands of digital data storage. The continuous development and adoption of decentralized technologies like IPFS are likely to play a pivotal role in shaping the future landscape of data storage, making it more secure, efficient, and resilient. This paradigm shift will empower organizations and individuals alike, granting them greater control over their data while significantly mitigating security risks [6].

7. Future Implementation

Looking forward, the potential for Ethereum to further impact data management practices is vast. As blockchain technology continues to mature, we can anticipate several developments:

 Improved Scalability: Innovations such Ethereum 2.0, which aims to introduce sharding and proof of stake mechanisms, are expected to enhance the scalability of blockchain networks. This will allow for higher transaction throughput

- and more extensive adoption of blockchain-based distributed file systems [9].
- Enhanced Interoperability: Future advancements may focus on improving the interoperability between different blockchain systems and traditional data management infrastructures. This will facilitate smoother integration processes and wider adoption of blockchain technology in existing IT landscapes [10].
- Regulatory Adaptation: As blockchain becomes more prevalent, regulatory frameworks are likely to evolve to better accommodate and govern decentralized data transactions. This will help ensure that data management practices comply with legal standards, enhancing trust and security for all stakeholders [3].

The integration of Ethereum into distributed file systems is poised to offer more than just improvements in data accessibility and security; it also has the potential to foster new business models and services that capitalize on the decentralized, transparent, and immutable nature of blockchain. For instance, businesses could leverage blockchain to create new forms of data services or to enhance customer privacy and control over their information [4].

In conclusion, Ethereum's integration with distributed file systems represents a forward-thinking approach to addressing the complexities and demands of modern data management. This technology offers promising solutions to enhance data accessibility, bolster security measures, and ensure data integrity across decentralized networks. As we continue to witness the convergence of blockchain technology with various sectors, the principles, and applications discussed in this paper will likely play a pivotal role in shaping the future landscape of data management, making it more secure, efficient, and universally accessible [11].

CONFLICT OF INTEREST

The authors declare that they do not have any conflict of interest.

REFERENCES

- [1] Athanere S, Thakur R. Blockchain based hierarchical semidecentralized approach using IPFS for secure and efficient data sharing. J King Saud Univ-Comput Inf Sci. 2022;34(4):1523–34. doi: 10.1016/j.jksuci.2022.01.019. ISSN 1319-1578.
- Alizadeh M, Andersson K, Schelén O. Efficient decentralized data storage based on public blockchain and IPFS. 2020 IEEE Asia-Pacific Conference on Comput-er Science and Data Engineering (CSDE), pp. 1-8, Gold Coast, Australia, 2020. doi: 10.1109/CSDE50874.2020.9411599
- Doan T, Psaras Y, Ott J, Bajpai V. Toward decentralized cloud storage with IPFS: opportunities, challenges, and future considerations. IEEE Internet Compu-t. 1 Nov-Dec 2022;26(6):7-15. doi: 10.1109/MIC.2022.3209804.
- Gaimal Y. Udayakumar R. Blockchain-based access control and data sharing mechanism in cloud decentralized storage system. J Web Eng. July 2021;20(5):1359-88. doi: 10.13052/jwe1540-9589.2054.
- Shah M, Shaikh M, Mishra V, Tuscano G. Decentralized cloud storage using blockchain. 2020 4th International Conference on Trends in Electronics and Informat-ics (ICOEI) (48184), pp. 384–9, Tirunelveli, India, 2020. doi: 10.1109/ICOEI48184.2020.9143004.

- Lin Y, Zhang C. A method for protecting private data in IPFS. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 404-9, Dalian, China, 2021. doi: 10.1109/CSCWD49262.2021.9437830.
- Battah A, Madine M, Alzaabi H, Yaqoob I, Salah K, Jayaraman R. Blockchain-based multi-party authorization for accessing IPFS encrypted data. IEEE Access. 2020;8:196813-25. doi: 10.1109/AC-CESS.2020.3034260.
- [8] Ullah Z, Raza B, Shah H, Khan S, Waheed A. Towards blockchainbased secure storage and trusted data sharing scheme for IoT environment. IEEE Ac-cess. 2022;10:36978-94. doi: 10.1109/AC-CESS.2022.3164081.
- Zhang Q, Zhao Z. Distributed storage scheme for encryption speech data based on blockchain and IPFS. J Supercomput. 2023;79:897-923.
- [10] Khatiwada P, Yang B. An access control and authentication scheme for secure data sharing in the decentralized cloud storage system. 2022 5th Conference on Cloud and Internet of Things (CIoT), pp. 137-44, Marrakech, Morocco, 2022. doi: 10.1109/CIoT53061.2022.9766634.
- [11] Hoang V, Lehtihet E, Ghamri Doudane Y. Privacy-preserving blockchain-based data sharing platform for decentralized storage systems. 2020 IFIP Networking Conference (Networking), pp. 280-Paris. France, 2020.
- [12] Hasan H, Salah K. Trustworthy IoT data streaming using blockchain and IPFS. IEEE Access. 2022;10:17707-21. doi: 10 1109/ACCESS 2022 3149312
- [13] Manakhari S, Qu Y. Performance comparison of deep learning and machine learn-ing models applied for P&C insurance for measuring prediction accuracy. Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), pp. 370–4, Las Vegas, NV, USA, 2023. doi: 10.1109/CSCE60160.2023.00065.
- [14] Manakhari S, Qu Y. Improving the accuracy and performance of deep learning model by applying hybrid grey wolf whale optimizer to P&C insurance data. *EJECE*. Jul, 2023;7(4):17–26.
- Manakhari S. Towards accurate prediction of prospective insurance customers via an enhanced optimization aided deep learning model. ProQuest Dissertations & Theses, Colorado Technical University; 2016. 30526176. Available from: https://www.proquest.co m/openview/6770a9b20d8f825b5c898513d6bcf39b/1?pq-origsite=g cholar&cbl=18750&diss=
- [16] Manakhari S. Colorado technical university, towards accurate prediction of prospec-tive insurance customers via an enhanced optimization aided deep learning model. ProQuest Dissert Thesis Pub. 2023;30526176:65-8.
- [17] Manakhari S, Jadhav A. Enhancing data security with decentralized cloud storage: an IPFS approach. 2024 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). Las Vegas, NV, USA, 2024
- [18] Manakhari S, Jadhav A. Enhancing smart home security: a robust voice authentication framework using K-nearest neighbors on IoT devices, 2024 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). Las Vegas, NV, USA, 2024.